## IOWA STATE UNIVERSITY Solar Power Plant and Substation Design

*Final Presentation* Omer Karar, Maddy Lakomek, Madissen Lawrence, Jacob Miller, Brooke Nelson, Jenna Runge, Ashton Randolph, Zachary Zimmerman

## **Team Introduction**

Omer Karar Madissen Lawrence Ashton Randolph Brooke Nelson Zach Zimmerman Jenna Runge Maddy Lakomek Jacob Miller

Advisor: Professor Ajjarapu <u>Client:</u> Black & Veatch



# **Project Overview**

## **Problem Statement & Requirements**

- US more aware of carbon footprint
  - Minimize emissions with more renewable energy resources
- Local utility in Roswell, New Mexico partnered with Black & Veatch
- Objective
  - Design 60 MW solar power plant
  - Design 34.5/115 kV substation that connects
- Requirements
  - Selection location, equipment, protection, layout
  - Complete multiple calculations
  - Create design using CAD and BlueBeam
  - Simulate design using ETAP

Location

## **Location - Roswell, New Mexico**

- Location Requirements
  - High irradiance
  - Low humidity
  - Flat
  - Low cost land
- Land Cost: \$600/acre at time of estimate
- Land Size Used: 200 acres
- Total Estimated Land Cost: \$120,000

Here is a month-by-month comparison of the average solar radiation in *Roswell* with the typical solar radiation in a city.

| Month | Low        | Roswell    | High       |
|-------|------------|------------|------------|
| Dec   | 1.76 k/m/d | 5.45 k/m/d | 4.93 k/m/d |
| Nov   | 1.87 k/m/d | 6.02 k/m/d | 5.87 k/m/d |
| Oct   | 3.36 k/m/d | 6.63 k/m/d | 6.44 k/m/d |
| Sep   | 5.01 k/m/d | 6.61 k/m/d | 7.46 k/m/d |
| Aug   | 5.66 k/m/d | 6.56 k/m/d | 7.06 k/m/d |
| Jul   | 5.92 k/m/d | 6.52 k/m/d | 6.72 k/m/d |
| Jun   | 5.16 k/m/d | 6.6 k/m/d  | 7.39 k/m/d |
| Мау   | 5.27 k/m/d | 6.78 k/m/d | 7.44 k/m/d |
| Apr   | 4.94 k/m/d | 7.12 k/m/d | 7.38 k/m/d |
| Mar   | 3.42 k/m/d | 6.94 k/m/d | 6.89 k/m/d |
| Feb   | 2.83 k/m/d | 6.49 k/m/d | 6.18 k/m/d |
| Jan   | 2.01 k/m/d | 5.91 k/m/d | 5.54 k/m/d |

Components



| ARRAY PARAMETER TOOL OUTPUT PARAMETERS |         |                         |          |                       |        |                        |      |                       |        |  |  |
|----------------------------------------|---------|-------------------------|----------|-----------------------|--------|------------------------|------|-----------------------|--------|--|--|
| String Size                            |         | Electrical Rack S       | ize      | Combiner Box Cap      | oacity | Array Design           |      | Arrary Size           |        |  |  |
| Min Temp (C)                           | -1.11   | Orientation             | Portrait | Mod/String Isc (A)    | 11.26  | Racks per Row          | 22   | Tilt (Degrees)        | 33     |  |  |
| Voc (V)                                | 53.61   | Module Width (FT)       | 3.425    | Max Isc (A)           | 17.59  | Row per Array          | 12   | Row Spacing (FT)      | 16.81  |  |  |
| Referecnce Temp (C)                    | 25      | Module Height (FT)      | 7.267    | Allowable Current (A) | 400    | Module Capacity (W)    | 480  | Array Height (FT)     | 331.2  |  |  |
| Temp Coeff of Voc (/C)                 | -0.0027 | Rack Width (# Modules)  | 26       | Racks per CB          | 11     | Inverter Capacity (kW) | 5000 | Array Width (FT)      | 1959.1 |  |  |
| String Voltage (V)                     | 1500    | Rack Height (# Modules) | 2        |                       |        | ILR                    | 1.31 | Ground Coverage Ratio | 0.501  |  |  |

CAD Layout

#### 4 Major Decisions

- Orientation
- Tilt
- Row Spacing
  - $\circ \quad \text{Shading} \quad$
  - Land Use
- Solar Farm Layout



Reference Section 3.2.2 1 Layout

#### Reference Section 3.2.2 1 Layout



**IOWA STATE UNIVERSITY** 

#### Zach Zimmerman 11

# Voltage Drop Calculations

## Voltage Drop

- Requirement Threshold: 5%
  - Original Design: 11.84%
  - Calculated along the strings, jumper, and feeder for normal array and small array
  - Final Drop Normal Array: 4.11%
  - Final Drop Small Array: 2.94%
  - Hand Calculations
  - Final Voltage: 1165V
    - Reference Design Document 3.2.2.4

 $V_d = \frac{2LR_2I}{1000}$ V\_d = voltage drop over circuit length (volts)

L = length of circuit (ft)

R<sub>2</sub> = resistance of conductor from Equation (ohm/kft)

Reference Section 3.2.2.3 Voltage Drop

I = maximum power current of circuit (amps)

| 24      | JUMPER VOLTAGE DROP CALCULATIONS: ARRAY A - L (TYP) |                   |                   |                     |                                   |                      |                              |                   |                  |                     |                      |                      |                              |  |
|---------|-----------------------------------------------------|-------------------|-------------------|---------------------|-----------------------------------|----------------------|------------------------------|-------------------|------------------|---------------------|----------------------|----------------------|------------------------------|--|
| DCB     | Strings per<br>Rack                                 | IMP for<br>String | String<br>Length  | String<br>wire size | String<br>Conductor<br>resistance | String<br>resistance | Voltage<br>Drop of<br>String | IMP for<br>Jumper | Jumper<br>Length | Jumper<br>wire size | Jumper<br>resistance | Jumper<br>resistance | Voltage<br>Drop of<br>Jumper |  |
| DCB#-## | per rack                                            | Amp               | feet              | AWG                 | Ohm/kft                           | Ohm                  | Volts                        | Amp               | feet             | AWG                 | Ohm/kft              | Ohm                  | Volts                        |  |
| DCB1-01 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 490.00           | 6                   | 0.808                | 0.766                | 16.945                       |  |
| DCB1-02 | 2                                                   | 10.7              | <mark>85.7</mark> | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 400.95           | 6                   | 0.808                | 0.627                | 13.866                       |  |
| DCB1-03 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 311.90           | 6                   | 0.808                | 0.488                | 10.786                       |  |
| DCB1-04 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 222.85           | 6                   | 0.808                | 0.348                | 7.707                        |  |
| DCB1-05 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 133.80           | 6                   | 0.808                | 0.209                | 4.627                        |  |
| DCB1-06 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 44.75            | 6                   | 0.808                | 0.070                | 1.548                        |  |
| DCB1-07 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 44.75            | 6                   | 0.808                | 0.070                | 1.548                        |  |
| DCB1-08 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 133.80           | 6                   | 0.808                | 0.209                | 4.627                        |  |
| DCB1-09 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 222.85           | 6                   | 0.808                | 0.348                | 7.707                        |  |
| DCB1-10 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 311.90           | 6                   | 0.808                | 0.488                | 10.786                       |  |
| DCB1-11 | 2                                                   | 10.7              | 85.7              | 10                  | 2.000                             | 0.332                | 3.668                        | 21.4              | 400.95           | 6                   | 0.808                | 0.627                | 13.866                       |  |

Where:

# **Substation Design**

# **Drawings and Calculations**

## **One Line Drawing**

Reference Section 3.3.1.1 One Line



## **Three Line Diagram**

Reference Section 3.3.1.2 Three Line



## **Key Plan**

Reference Section 3.3.1.3 Key Plan





#### **IOWA STATE UNIVERSITY**

#### Madison Lakomek | 18

## **Conduit Layout**

#### Reference Section 3.3.1.4 Conduit and Trench Plan



**IOWA STATE UNIVERSITY** 

#### Madison Lakomek | 19

## **Grounding Calculations**

Tolerable Step Voltage (EStep, V)

2526.351108

#### Ref. 3.3.1.5

• Standard Formulas used - IEEE 80, ch. 16

| /04.02430                                                                                  | 09                     |                                                                                                | $\mathbf{v}_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step Voltage                                                                               |                        | Touch Voltage                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ks                                                                                         | 1.264879093            | Kii                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $K_{s} = \frac{1}{\pi} \left[ \frac{1}{2 \times h} + \frac{1}{D+h} + \frac{1}{D} \right] $ | -0.5 <sup>n-2</sup> )] | $K_{ii} = \frac{1}{(2 \times 1)^{1/2}}$                                                        | $\frac{1}{\langle n \rangle_n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Кі                                                                                         | 2.382870017            | Kh                                                                                             | 1.072380529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $K_i = 0.644 + 0.14$                                                                       | $48 \times n$          | $K_h = \sqrt{1}$                                                                               | $+\frac{h}{h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ls                                                                                         | 3541.776               | V                                                                                              | n <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $I = 0.75 \times I \pm 0.85$                                                               |                        | Km                                                                                             | 0.6167069683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $L_S = 0.75 \times L_C + 0.83$                                                             | $D \wedge L_R$         | $K_m = \frac{1}{2} \times \left[ \ln \left[ \frac{D^2}{1 + 1} + \frac{D^2}{2} \right] \right]$ | $\left(\frac{1}{2} \times h\right)^{2}$ $\left(\frac{h}{1}\right)$ $\left(\frac{h}$ |
| Es (V)                                                                                     | 1532.76804             | $2 \times \pi \begin{bmatrix} 16 \times h \times d & 8 \end{pmatrix}$                          | $\times D \times d  4 \times d \rfloor  K_h  \lfloor \pi (2 \times n - 1) \rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $F_{c} = \frac{\rho \times K_{s} \times K_{i} \times K_{i}}{\kappa}$                       | IG                     | Lm                                                                                             | 6628.914678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $L_s = L_s$                                                                                |                        | $L_M = L_C + \left[ 1.55 + 1 \right]$                                                          | $1.22\left(\frac{L_r}{\sqrt{L_x^2 + L_y^2}}\right) L_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                            |                        | Em (V)                                                                                         | 399.2867873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                            |                        | $E_m = \frac{\rho \times K_m}{L}$                                                              | × Ki × IG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Tolerable Touch Voltage (ETouch, V)  $E_{touch 50} = (1000 + 1.5C_s \times \rho_s) \frac{0.116}{L_s}$ 

 $E_{step 50} = (1000 + 6C_s \times \rho_s) \frac{0.116}{\sqrt{t_s}}$ 

## **Grounding Layout**

Ref. 3.3.1.5



**IOWA STATE UNIVERSITY** 

Madissen Lawrence | 21

# Simulation



### **ETAP- Load Flow & Short Circuit Analysis**

Reference Section 5.1 ETAP

#### LOAD FLOW REPORT

| Bus        |         | Volt    | age  | Gener  | ration | Lo     | ad    |            | Load Flow |        |       |       | XFMR |
|------------|---------|---------|------|--------|--------|--------|-------|------------|-----------|--------|-------|-------|------|
| ID         | kV      | % Mag.  | Ang. | MW     | Mvar   | MW     | Mvar  | ID         | MW        | Mvar   | Amp   | %PF   | %Tap |
| Bus 1      | 34.500  | 99.927  | -0.1 | 0.000  | 0.000  | 0.000  | 0.000 | Bus 4      | 59.118    | 4.216  | 992.6 | 99.7  |      |
|            |         |         |      |        |        |        |       | Node 1     | -59.118   | -4.216 | 992.6 | 99.7  |      |
| Bus 2      | 34.500  | 99.914  | -0.1 | 0.000  | 0.000  | 0.000  | 0.000 | Bus 4      | 0.000     | 0.000  | 0.0   | 0.0   |      |
|            |         |         |      |        |        |        |       | Node 2     | 0.000     | 0.000  | 0.0   | 0.0   |      |
| Bus 3      | 34.500  | 99.914  | -0.1 | 0.000  | 0.000  | 0.000  | 0.000 | Bus 4      | 0.000     | 0.000  | 0.0   | 0.0   |      |
|            |         |         |      |        |        |        |       | Node 3     | 0.000     | 0.000  | 0.0   | 0.0   |      |
| Bus 4      | 34.500  | 99.914  | -0.1 | 0.000  | 0.000  | 0.000  | 0.000 | Bus 1      | -59.110   | -4.213 | 992.6 | 99.7  |      |
|            |         |         |      |        |        |        |       | Bus 2      | 0.000     | 0.000  | 0.0   | 0.0   |      |
|            |         |         |      |        |        |        |       | Bus 3      | 0.000     | 0.000  | 0.0   | 0.0   |      |
|            |         |         |      |        |        |        |       | XFORMER LV | 59.110    | 4.213  | 992.6 | 99.7  |      |
| *Node 1    | 34.500  | 100.000 | 0.0  | 59.157 | 4.274  | 0.000  | 0.000 | Bus 1      | 59.157    | 4.274  | 992.6 | 99.7  |      |
| Node 2     | 34.500  | 99.914  | -0.1 | 0.000  | 0.000  | 0.000  | 0.000 | Bus 2      | 0.000     | 0.000  | 0.0   | 0.0   |      |
| Node 3     | 34.500  | 99.914  | -0.1 | 0.000  | 0.000  | 0.000  | 0.000 | Bus 3      | 0.000     | 0.000  | 0.0   | 0.0   |      |
| Node 4     | 115.000 | 99.496  | -3.3 | 0.000  | 0.000  | 0.000  | 0.000 | Node 5     | 59.006    | 0.888  | 297.8 | 100.0 |      |
|            |         |         |      |        |        |        |       | XFORMER HV | -59.006   | -0.888 | 297.8 | 100.0 |      |
| Node 5     | 115.000 | 98.852  | -4.1 | 0.000  | 0.000  | 58.631 | 0.000 | Node 4     | -58.631   | 0.000  | 297.8 | 100.0 |      |
| XFORMER HV | 115.000 | 99.496  | -3.3 | 0.000  | 0.000  | 0.000  | 0.000 | Node 4     | 59.006    | 0.888  | 297.8 | 100.0 |      |
|            |         |         |      |        |        |        |       | XFORMER LV | -59.006   | -0.888 | 297.8 | 100.0 |      |
| XFORMER LV | 34.500  | 99.902  | -0.1 | 0.000  | 0.000  | 0.000  | 0.000 | Bus 4      | -59.103   | -4.209 | 992.6 | 99.7  |      |
|            |         |         |      |        |        |        |       | XFORMER HV | 59.103    | 4.209  | 992.6 | 99.7  |      |

#### Short-Circuit Summary Report

#### & LLG Fault Currents

the Bus Nominal Voltage

|         | 3-Phase Fault |        | Line-t | Line-to-Ground Fault |        |       | -to-Line I | ault  | *Line-to-Line-to-Ground |        |       |       |
|---------|---------------|--------|--------|----------------------|--------|-------|------------|-------|-------------------------|--------|-------|-------|
| kV      | Real          | Imag.  | Mag.   | Real                 | Imag.  | Mag.  | Real       | Imag. | Mag.                    | Real   | Imag. | Mag.  |
| 34.500  | 0.306         | -5.697 | 5.706  | 0.716                | -7.305 | 7.340 | 5.048      | 0.415 | 5.065                   | -5.444 | 4.453 | 7.033 |
| 115.000 | 0.063         | -1.293 | 1.294  | 0.114                | -1.757 | 1.760 | 1.140      | 0.079 | 1.142                   | 1.081  | 1.360 | 1.737 |
| 34.500  | 0.310         | -5.695 | 5.703  | 0.726                | -7.293 | 7.329 | 5.045      | 0.418 | 5.063                   | -5.455 | 4.434 | 7.030 |

#### 1/2 Cycle network) values in rms kA.

the two faulted line currents.

\* Indicates a voltage regulated bus ( voltage controlled or swing type machine connected to it)

# Indicates a bus with a load mismatch of more than 0.1 MVA

# **Bill of Materials**

## **Cost Analysis - Solar Array**

| No Axis Tracking<br>Installation Cost | \$13/kWh<br>O+M/vr  | Inflation Rate   | Yearly Revenue    |                  |                  |                  |                  |                  |                  |                  |
|---------------------------------------|---------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| \$ 103,689,637.13                     | \$ 585,000.00       | 3.22%            | \$ 11,510,246.23  |                  |                  |                  |                  |                  |                  |                  |
| \$1767/kW                             |                     |                  |                   |                  |                  |                  |                  |                  |                  |                  |
| Cash Flow                             |                     |                  |                   |                  |                  |                  |                  |                  |                  |                  |
| Year O                                | Year 1              | Year 2           | Year 3            | Year 4           | Year 5           | Year 6           | Year 7           | Year 8           | Year 9           | Year 10          |
| \$ (103,689,637.13)                   | \$ 10,925,246.23    | \$ 11,277,039.16 | \$ 11,640,159.82  | \$ 12,014,972.96 | \$ 12,401,855.09 | \$ 12,801,194.83 | \$ 13,213,393.30 | \$ 13,638,864.56 | \$ 14,078,036.00 | \$ 14,531,348.76 |
|                                       |                     |                  |                   |                  |                  |                  |                  |                  |                  |                  |
| Present Value                         |                     |                  |                   |                  |                  |                  |                  |                  |                  |                  |
| Years                                 | Installation Cost   | O+M              | Revenue           | Profit           |                  |                  |                  |                  |                  |                  |
| 10                                    | \$ (103,689,637.13) | (\$4,934,606.35) | \$ 126,522,110.71 | \$ 17,897,867.22 |                  |                  |                  |                  |                  |                  |
|                                       |                     |                  |                   |                  |                  |                  |                  |                  |                  |                  |

Reference 3.2.2.3 Racking Components, 3.4 Technology Considerations, Figure 32: Solar Cost Analysis

## **Cost Analysis - Substation**

#### Ref: 3.3.2.6

| Component Type                   | Price (per unit)                                                                       | Lead Time                                | Notes                                                                                 | Number of Units Used              | Total Cost     | Link to Source                           |
|----------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------|----------------|------------------------------------------|
| Power Transformer                | \$1,500,000                                                                            | 1 year regarldess of size                | Cost estimate for PT from 50<br>MVA to 100 MVA                                        | 1                                 | \$1,500,000.00 | PE Guru - Power Transformer              |
| Circuit Breaker                  | \$35,000 / \$80,000                                                                    | 6 months                                 | \$35k is estimated for 35kV gas<br>tank CB. \$80k is estimated for<br>138kV dead tank | 5                                 | \$140,080.00   | PEGuru - Circuit Breaker                 |
| Disconnect Switch                | \$20,000                                                                               | 22 weeks                                 | Estimate for 138kV 2000A with motor operator                                          | 1                                 | \$20,000.00    | PEGuru - Disconnect Switch               |
| Circuit Switcher                 | \$40,000                                                                               | 18 weeks                                 | Estimate for 138kV 2000A<br>circuit switcher. Alt option -<br>capacitor switcher      | 0                                 | \$0.00         | PEGuru - Circuit Switcher                |
| Voltage Transformer              | \$2,000 per phase                                                                      | 4 weeks                                  | 34.5 kV wound transformer                                                             | 1                                 | \$6,000.00     | PEGuru - Voltage Transformer             |
| Capacitor Voltage<br>Transformer | \$7,000 per phase                                                                      | 16 weeks                                 | 138kV to 67/115V CVT                                                                  | 1                                 | \$7,000.00     | PEGuru - Capcitor Voltage<br>Transformer |
| Current Transformer              | \$15,000 per phase                                                                     | 1 year                                   | 138 kV wound stand-alone                                                              | 78                                | \$1,170,000.00 | PEGuru - Current Transformer             |
| Capacitor Bank                   | \$75,000+ based on model and sizing                                                    | 25 weeks                                 | Pricing based on 69kV+                                                                | 0                                 | \$0.00         | PEGuru - Capacitor Bank                  |
| Inductor                         | \$60,000+ depending on model and specs                                                 | 20 weeks for MV, 30 weeks for HV and EHV | Pricing based on 34kV and 138<br>kV inductors                                         | 0                                 | \$0.00         | PEGuru - Inductor                        |
|                                  | \$600 - \$17,000 per<br>phase                                                          | 20 weeks                                 | Pricing based on 69kV - 500kV<br>range, price of 138kV+ includes                      |                                   |                |                                          |
| Surge Arrestor                   |                                                                                        |                                          | cost of structual steel                                                               | 0                                 | \$0.00         | PEGuru - Surge Arrestor                  |
| Wave Trap                        | \$12,000 - \$30,000                                                                    | 20 weeks                                 | Pricing based on 69kV - 345 kV                                                        | 0                                 | \$0.00         | PEGuru - Wave Trap                       |
| Insulator                        | \$500 each                                                                             | 8 weeks                                  | Price for 138 kV                                                                      | 0                                 | \$0.00         | PEGuru - Insulator                       |
| Gas Insulated                    | \$500,000 - Single<br>leg/bay of 138kV<br>breaker & half sub<br>\$2,600 per ft - 345kV | 1 year                                   | \$500,000 equipment does not<br>include protective relays                             |                                   |                | PEGuru - Gas Insulated<br>Switchgear     |
| Switchgear                       | gas-insulated                                                                          |                                          |                                                                                       | 0                                 | \$0.00         |                                          |
|                                  |                                                                                        |                                          |                                                                                       | Estimated Total Cost of Equipment | \$2,843,080.00 |                                          |

## **Other Work Completed**

- Solar Wiring Diagram
  - Reference: 3.2.2.2
- Solar Racking Components
  - Reference: 3.2.2.3
- Voltage Drop Hand Calculation Check
  - Reference: 3.2.2.4
- DC Battery Calculations
  - Reference: 3.3.2.1

- Lightning Protection
  - Reference: 3.3.2.2
- Bus Calculations
  - Reference: 3.3.2.3
- AC Load Calculations
  - Reference: 3.3.2.4
- Trench Calculations
  - Reference: 3.3.1.4

## **Major Individual Contributions**

#### Madissen Lawrence

- Voltage Drop Calculations
- DC Battery Calculations
- Website
- AC Load Calculations
- Grounding Grid
- Substation Part Estimate

#### <u>Jenna Runge</u>

- Voltage Drop Calculations
- DC Battery Calculations
- AC Load Calculations
- Grounding Grid
- Substation Part Estimate

#### Madison Lakomek

- Solar field cost analysis
- Bus calculations
- Key Plan
- Conduit Plan
- Three Line Diagram

### Ashton Randolph

- Solar Farm Cost Analysis
- Cable Trench Calculations
- ETAP

### Jacob Miller

- Substation One-line Diagram (AutoCAD)
- Lightning Protection
- Relaying Protection

#### Zachary Zimmerman

- Solar Plant Configuration (APT)
- Solar Plant Design (AutoCAD)
- Voltage Drop Calculations
- Bus Calculations
- ETAP

#### Omer Karar

- Relaying Protection
- Substation One-line diagram (AutoCAD)
- Lightning Protection

### **Brooke Nelson**

- Voltage Drop Hand Calculations
- Cable Trench Calculations
- AC Load Calculations
- Conduit Plan

## **Possible Future Work**

- Control House Design
- Bill of Materials Full Project
- Breakdown of 3 Line Diagrams

# **Questions?**

